Monday, March 4, 2019

Basics of R- Session :- Image classification using JPG images and svm, and knn

# classification of Image into two group
# Library raster, rasterimage

rm(list=ls())

library(imager)
## Loading required package: magrittr
## 
## Attaching package: 'imager'
## The following object is masked from 'package:magrittr':
## 
##     add
## The following objects are masked from 'package:stats':
## 
##     convolve, spectrum
## The following object is masked from 'package:graphics':
## 
##     frame
## The following object is masked from 'package:base':
## 
##     save.image
# import images from Directory or load images of IMCU faculty members
IMCU.Images<- load.dir(path="C:/Users/LENOVO/Desktop/Image classification/institute of Management", pattern=".jpg")
#str(IMCU.Images)
# plot(IMCU.Images[1])

# Use for loop

#--------------------------------------------#
# convert image into gray scale
for (i in 1:length(IMCU.Images))
{
  IMCU.Images[[i]]<- grayscale(IMCU.Images[[i]])  
}

#str(IMCU.Images)
class(IMCU.Images)
## [1] "imlist" "list"
# plot(IMCU.Images[[1]])

#--------------------------------------------#
# conver image to same size- rescale
for (i in 1:length(IMCU.Images))
{
  IMCU.Images[[i]]<-resize(IMCU.Images[[i]], size_x = 100, size_y = 100, size_z = 1, size_c = 1)
}

IMCU.Images
## Image list of size 66
#str(IMCU.Images)
class(IMCU.Images)
## [1] "imlist" "list"
#plot(IMCU.Images[[1]])

#-------------------------------------------------#

# save the each image pixel data as numeric

for (i in 1:length(IMCU.Images))
{
  IMCU.Images[[i]]<-as.numeric(IMCU.Images[[i]]) # convert to number
}

#str(IMCU.Images)
class(IMCU.Images)
## [1] "imlist" "list"
#-------------------------------------------------#
# convert data into data frame

IMCU.Images.data<-as.data.frame(IMCU.Images)
str(IMCU.Images.data)
## 'data.frame':    660000 obs. of  2 variables:
##  $ im: chr  "E1125.jpg" "E1125.jpg" "E1125.jpg" "E1125.jpg" ...
##  $ v : num  1 1 1 1 1 1 1 1 1 1 ...
#---------------------------------------------#
# adding unique ids to the data, 
# since we know each image has 100*100 points

IMCU.Images.data$id<-seq(1:10000)
str(IMCU.Images.data)
## 'data.frame':    660000 obs. of  3 variables:
##  $ im: chr  "E1125.jpg" "E1125.jpg" "E1125.jpg" "E1125.jpg" ...
##  $ v : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ id: int  1 2 3 4 5 6 7 8 9 10 ...
#---------------------------------#
# add grouping variable to the data set
IMCU.Images.data$group1<-"imcu"
str(IMCU.Images.data)
## 'data.frame':    660000 obs. of  4 variables:
##  $ im    : chr  "E1125.jpg" "E1125.jpg" "E1125.jpg" "E1125.jpg" ...
##  $ v     : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ group1: chr  "imcu" "imcu" "imcu" "imcu" ...
IMCU.Images.data$group1<-as.factor(IMCU.Images.data$group1)

# rearrange the data
IMCU.Images.data<-IMCU.Images.data[,c("id","group1","im","v")]
str(IMCU.Images.data)
## 'data.frame':    660000 obs. of  4 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ group1: Factor w/ 1 level "imcu": 1 1 1 1 1 1 1 1 1 1 ...
##  $ im    : chr  "E1125.jpg" "E1125.jpg" "E1125.jpg" "E1125.jpg" ...
##  $ v     : num  1 1 1 1 1 1 1 1 1 1 ...
#IMCU.Images.data

#----------------------------#
# since the data created is a single col with all pixel positions
# converting 10000 pixels address as variables

library(tidyr)
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:imager':
## 
##     fill
## The following object is masked from 'package:magrittr':
## 
##     extract
IMCU.Images.data.1<-spread(IMCU.Images.data, id, v)
#str(IMCU.Images.data.1)
now create a data set for the other department Management Science
# import images from Directory or load images of IMCU faculty members
MS.Images<- load.dir(path="C:/Users/LENOVO/Desktop/Image classification/management studies", pattern=".jpg")
#str(MS.Images)
#plot(MS.Images[1])

# Use for loop

#--------------------------------------------#
# convert image into gray scale
for (i in 1:length(MS.Images))
{
  MS.Images[[i]]<- grayscale(MS.Images[[i]])  
}

#str(MS.Images)
class(MS.Images)
## [1] "imlist" "list"
#--------------------------------------------#
# conver image to same size- rescale
for (i in 1:length(MS.Images))
{
  MS.Images[[i]]<-resize(MS.Images[[i]], size_x = 100, size_y = 100, size_z = 1, size_c = 1)
}

MS.Images
## Image list of size 40
#str(MS.Images)
class(MS.Images)
## [1] "imlist" "list"
# plot(MS.Images[[1]])

#-------------------------------------------------#

# save the each image pixel data as numeric

for (i in 1:length(MS.Images))
{
  MS.Images[[i]]<-as.numeric(MS.Images[[i]]) # convert to number
}

#str(MS.Images)
class(MS.Images)
## [1] "imlist" "list"
#-------------------------------------------------#
# convert data into data frame

MS.Images.data<-as.data.frame(MS.Images)

#---------------------------------------------#
# adding unique ids to the data, 
# since we know each image has 100*100 points

MS.Images.data$id<-seq(1:10000)
str(MS.Images.data)
## 'data.frame':    400000 obs. of  3 variables:
##  $ im: chr  "E1247.jpg" "E1247.jpg" "E1247.jpg" "E1247.jpg" ...
##  $ v : num  0.922 0.941 0.945 0.937 0.941 ...
##  $ id: int  1 2 3 4 5 6 7 8 9 10 ...
#---------------------------------#
# add grouping variable to the data set
MS.Images.data$group1<-"MS"
str(MS.Images.data)
## 'data.frame':    400000 obs. of  4 variables:
##  $ im    : chr  "E1247.jpg" "E1247.jpg" "E1247.jpg" "E1247.jpg" ...
##  $ v     : num  0.922 0.941 0.945 0.937 0.941 ...
##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ group1: chr  "MS" "MS" "MS" "MS" ...
MS.Images.data$group1<-as.factor(MS.Images.data$group1)

# rearrange the data
MS.Images.data<-MS.Images.data[,c("id","group1","im","v")]
str(MS.Images.data)
## 'data.frame':    400000 obs. of  4 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ group1: Factor w/ 1 level "MS": 1 1 1 1 1 1 1 1 1 1 ...
##  $ im    : chr  "E1247.jpg" "E1247.jpg" "E1247.jpg" "E1247.jpg" ...
##  $ v     : num  0.922 0.941 0.945 0.937 0.941 ...
# MS.Images.data

#----------------------------#
# since the data created is a single col with all pixel positions
# converting 10000 pixels address as variables

library(tidyr)
MS.Images.data.1<-spread(MS.Images.data, id, v)
#str(MS.Images.data.1)
combine the two data set created
CU.images.data<-rbind(IMCU.Images.data.1, MS.Images.data.1)
# str(CU.images.data)

apply model for classification

apply the knn on the whole data

# remove the variable im
CU.images.data<-CU.images.data[,-2]
# use caret package for KNN
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
fitControl = trainControl(method="cv")

knnMod2 = train(group1 ~ ., data=CU.images.data,
                method="knn",
                trControl=fitControl,
                preProcess=c("center","scale"),
                tuneLength=5)

summary(knnMod2)
##             Length Class      Mode     
## learn           2  -none-     list     
## k               1  -none-     numeric  
## theDots         0  -none-     list     
## xNames      10000  -none-     character
## problemType     1  -none-     character
## tuneValue       1  data.frame list     
## obsLevels       2  -none-     character
## param           0  -none-     list
print(knnMod2)
## k-Nearest Neighbors 
## 
##   106 samples
## 10000 predictors
##     2 classes: 'imcu', 'MS' 
## 
## Pre-processing: centered (10000), scaled (10000) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 96, 95, 96, 95, 95, 96, ... 
## Resampling results across tuning parameters:
## 
##   k   Accuracy   Kappa    
##    5  0.6754545  0.3341953
##    7  0.6690909  0.3081981
##    9  0.6300000  0.2157474
##   11  0.6209091  0.1961218
##   13  0.6127273  0.1482331
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
plot(knnMod2)
pred = predict(knnMod2, newdata=CU.images.data)
confusionMatrix(pred, CU.images.data[,1])
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction imcu MS
##       imcu   56 10
##       MS     10 30
##                                           
##                Accuracy : 0.8113          
##                  95% CI : (0.7238, 0.8808)
##     No Information Rate : 0.6226          
##     P-Value [Acc > NIR] : 2.122e-05       
##                                           
##                   Kappa : 0.5985          
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.8485          
##             Specificity : 0.7500          
##          Pos Pred Value : 0.8485          
##          Neg Pred Value : 0.7500          
##              Prevalence : 0.6226          
##          Detection Rate : 0.5283          
##    Detection Prevalence : 0.6226          
##       Balanced Accuracy : 0.7992          
##                                           
##        'Positive' Class : imcu            
## 

—————————————————-

SUpport vector Machine

library(e1071)

dtm1<-svm(group1~., data = CU.images.data,kernel = "linear",scale = TRUE)
summary(dtm1)
## 
## Call:
## svm(formula = group1 ~ ., data = CU.images.data, kernel = "linear", 
##     scale = TRUE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  1 
##       gamma:  1e-04 
## 
## Number of Support Vectors:  85
## 
##  ( 50 35 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  imcu MS
#dtm1$SV
#dtm1$kernel
#dtm1$tot.nSV
#dtm1$decision.values
#dtm1$fitted
#dtm1$coefs

# to check is it a good classifier we will use confusion matrix
predict1<-predict(dtm1,CU.images.data)
confusionMatrix(predict1,CU.images.data$group1)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction imcu MS
##       imcu   66  0
##       MS      0 40
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9658, 1)
##     No Information Rate : 0.6226     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##  Mcnemar's Test P-Value : NA         
##                                      
##             Sensitivity : 1.0000     
##             Specificity : 1.0000     
##          Pos Pred Value : 1.0000     
##          Neg Pred Value : 1.0000     
##              Prevalence : 0.6226     
##          Detection Rate : 0.6226     
##    Detection Prevalence : 0.6226     
##       Balanced Accuracy : 1.0000     
##                                      
##        'Positive' Class : imcu       
## 

————————————————————-

Predicting for image out of data set

test data set

import images from Directory or load images of IMCU faculty members

test.Images<- load.dir(path="C:/Users/LENOVO/Desktop/Image classification/test", pattern=".jpg")

# convert image into gray scale
for (i in 1:length(test.Images))
{
  test.Images[[i]]<- grayscale(test.Images[[i]])  
}

# conver image to same size- rescale

for (i in 1:length(test.Images))
{
  test.Images[[i]]<-resize(test.Images[[i]], size_x = 100, size_y = 100, size_z = 1, size_c = 1)
}
# save the each image pixel data as numeric

for (i in 1:length(test.Images))
{
  test.Images[[i]]<-as.numeric(test.Images[[i]]) # convert to number
}

#-------------------------------------------------#
# convert data into data frame

test.Images.data<-as.data.frame(test.Images)

#---------------------------------------------#
# adding unique ids to the data, 
# since we know each image has 100*100 points

test.Images.data$id<-seq(1:10000)

#---------------------------------#
# add grouping variable to the data set
test.Images.data$group1<-"test"
test.Images.data$group1<-as.factor(test.Images.data$group1)

# rearrange the data
test.Images.data<-test.Images.data[,c("id","group1","im","v")]

#----------------------------#
# converting 10000 pixels address as variables

library(tidyr)

test.Images.data.1<-spread(test.Images.data, id, v)
#str(test.Images.data.1)
test.Images.data.1<-test.Images.data.1[,-2]

# to check is it a good classifier we will use confusion matrix
predict1<-predict(dtm1,test.Images.data.1)
predict1
##    1    2    3    4 
## imcu imcu imcu imcu 
## Levels: imcu MS

———————————————-

Random Forest tree

takes lot of time - Not useful