library(caret)
library(ISLR)
data1<-read.csv("file:///C:/Users/LENOVO/Desktop/Missing/Chapter 10 Bollywood Box Office Collection Data.csv")
# data partition
data1$Success.Faliure<-as.factor(data1$Success.Faliure)
set.seed(100)
split1<-createDataPartition(data1$Success.Faliure,p=0.7, list = FALSE)
data1train <- data1[split1, ]
data1test <- data1[-split1, ]
fitControl <- trainControl(
method = "cv",
number = 10,
savePredictions = TRUE
)
lreg3<-train(Success.Faliure~
Youtube_Dislikes+Youtube_Likes+Youtube_Views,
method= "glm",
family= "binomial",
trControl=fitControl,
data = data1)
summary(lreg3)
library(ISLR)
data1<-read.csv("file:///C:/Users/LENOVO/Desktop/Missing/Chapter 10 Bollywood Box Office Collection Data.csv")
# data partition
data1$Success.Faliure<-as.factor(data1$Success.Faliure)
set.seed(100)
split1<-createDataPartition(data1$Success.Faliure,p=0.7, list = FALSE)
data1train <- data1[split1, ]
data1test <- data1[-split1, ]
fitControl <- trainControl(
method = "cv",
number = 10,
savePredictions = TRUE
)
lreg3<-train(Success.Faliure~
Youtube_Dislikes+Youtube_Likes+Youtube_Views,
method= "glm",
family= "binomial",
trControl=fitControl,
data = data1)
summary(lreg3)
# predicted values and residual
lreg3$finalModel$coefficients
lreg3$finalModel$fitted.values
lreg3$finalModel$residuals
lreg3$results
coef(lreg1$finalModel)
confint(lreg1$finalModel)
# model fit indices
library(blorr)
library(Rcpp)
library(tidymodels)
blr_model_fit_stats(lreg1$finalModel)
blr_test_hosmer_lemeshow(lreg1$finalModel)
blr_bivariate_analysis(lreg1$finalModel)
# walds test, for each IV variables
library(survey)
regTermTest(lreg1$finalModel, "ï..Age")
# confusionmatrix
blr_confusion_matrix(lreg3$finalModel, cutoff = 0.5)
confusionMatrix(predict1, data1$Success.Faliure)
# for roc
gainstable<-blr_gains_table(lreg3$finalModel)
blr_roc_curve(gainstable)
library(ROCR)
predict1<-predict(lreg3,data1, type = "prob")
predict_roc<-prediction(predict1[2], data1$Success.Faliure)
predict_roc2<-performance(predict_roc, measure = "tpr", "fpr")
plot(predict_roc2)
predict_roc2<-performance(predict_roc, measure = "auc")
predict_roc2@y.values[[1]]
predict1<-predict(lreg3,data1, type = "prob")
predict_roc<-prediction(predict1[2], data1$Success.Faliure)
predict_roc2<-performance(predict_roc, measure = "tpr", "fpr")
plot(predict_roc2)
predict_roc2<-performance(predict_roc, measure = "auc")
predict_roc2@y.values[[1]]
# forward method, backward method, both
library(blorr)
regfor<-blr_step_aic_forward(lreg1$finalModel)
regfor
regfor1<-blr_step_aic_forward(lreg1$finalModel, details = TRUE)
regback<-blr_step_aic_backward(lreg1$finalModel)
regback
regboth<-blr_step_aic_both(reg1$finalModel)
regboth
#_will take lot of time not advisable #
library(caret)
reg1<-train(Status~.,
method ="glmStepAIC",
family= "binomial",
direction ="forward"
data = datatrain)
reg1$finalmodel
#-----------------------------------------------------------------------------------------#