Monday, June 11, 2018

Basics of R- Session 4- Import data from Excel and Explore the data

Import the dataset–> Big Mart Dataset
# To import excel sheet, through import dataset in R environment or through read.csv() 

# Location of the data set---D:\1 Teaching Material\R\1 R Open elective\data set

# Method 1

Bigmart<-read.csv("D:/1 Teaching Material/R/1 R Open elective/data set/Big Mart Dataset.csv")

# Method 2

# Bigmart<-read.csv(choose.files())

To import xls file, java is also required

library(readxl)

Bigmart1<-read_xls("D:/1 Teaching Material/R/1 R Open elective/data set/Big Mart Dataset.xls", 1)

# here the number 1 means the first sheet of the xlsx file
Exploration of the data set
# Bigmart

str(Bigmart)
## 'data.frame':    8523 obs. of  12 variables:
##  $ Item_Identifier          : Factor w/ 1559 levels "DRA12","DRA24",..: 157 9 663 1122 1298 759 697 739 441 991 ...
##  $ Item_Weight              : num  9.3 5.92 17.5 19.2 8.93 ...
##  $ Item_Fat_Content         : Factor w/ 5 levels "LF","low fat",..: 3 5 3 5 3 5 5 3 5 5 ...
##  $ Item_Visibility          : num  0.016 0.0193 0.0168 0 0 ...
##  $ Item_Type                : Factor w/ 16 levels "Baking Goods",..: 5 15 11 7 10 1 14 14 6 6 ...
##  $ Item_MRP                 : num  249.8 48.3 141.6 182.1 53.9 ...
##  $ Outlet_Identifier        : Factor w/ 10 levels "OUT010","OUT013",..: 10 4 10 1 2 4 2 6 8 3 ...
##  $ Outlet_Establishment_Year: int  1999 2009 1999 1998 1987 2009 1987 1985 2002 2007 ...
##  $ Outlet_Size              : Factor w/ 4 levels "","High","Medium",..: 3 3 3 1 2 3 2 3 1 1 ...
##  $ Outlet_Location_Type     : Factor w/ 3 levels "Tier 1","Tier 2",..: 1 3 1 3 3 3 3 3 2 2 ...
##  $ Outlet_Type              : Factor w/ 4 levels "Grocery Store",..: 2 3 2 1 2 3 2 4 2 2 ...
##  $ Item_Outlet_Sales        : num  3735 443 2097 732 995 ...
dim(Bigmart)
## [1] 8523   12
class(Bigmart)
## [1] "data.frame"
class(Bigmart$Item_Identifier)
## [1] "factor"
# Bigmart[]
# Bigmart[,]

#Bigmart[,2]

# Bigmart[1,]

Bigmart[1,2:3]
##   Item_Weight Item_Fat_Content
## 1         9.3          Low Fat
# Bigmart$Item_Identifier

Bigmart$Item_Identifier[2]
## [1] DRC01
## 1559 Levels: DRA12 DRA24 DRA59 DRB01 DRB13 DRB24 DRB25 DRB48 DRC01 ... NCZ54
Bigmart$Item_Identifier[2:4]
## [1] DRC01 FDN15 FDX07
## 1559 Levels: DRA12 DRA24 DRA59 DRB01 DRB13 DRB24 DRB25 DRB48 DRC01 ... NCZ54
Bigmart$Item_Identifier[c(2:4, 10:12)]
## [1] DRC01 FDN15 FDX07 FDU28 FDY07 FDA03
## 1559 Levels: DRA12 DRA24 DRA59 DRB01 DRB13 DRB24 DRB25 DRB48 DRC01 ... NCZ54
Bigmart$Item_Identifier[2:4]
## [1] DRC01 FDN15 FDX07
## 1559 Levels: DRA12 DRA24 DRA59 DRB01 DRB13 DRB24 DRB25 DRB48 DRC01 ... NCZ54
# fix(Bigmart)

# To find the number of variables in a file
length(Bigmart)
## [1] 12
# To find the number of observation in a file

length(Bigmart$Item_Weight)
## [1] 8523
# number of rows or columns

nrow(Bigmart)
## [1] 8523
ncol(Bigmart)
## [1] 12
head(Bigmart)
##   Item_Identifier Item_Weight Item_Fat_Content Item_Visibility
## 1           FDA15       9.300          Low Fat        0.016047
## 2           DRC01       5.920          Regular        0.019278
## 3           FDN15      17.500          Low Fat        0.016760
## 4           FDX07      19.200          Regular        0.000000
## 5           NCD19       8.930          Low Fat        0.000000
## 6           FDP36      10.395          Regular        0.000000
##               Item_Type Item_MRP Outlet_Identifier
## 1                 Dairy 249.8092            OUT049
## 2           Soft Drinks  48.2692            OUT018
## 3                  Meat 141.6180            OUT049
## 4 Fruits and Vegetables 182.0950            OUT010
## 5             Household  53.8614            OUT013
## 6          Baking Goods  51.4008            OUT018
##   Outlet_Establishment_Year Outlet_Size Outlet_Location_Type
## 1                      1999      Medium               Tier 1
## 2                      2009      Medium               Tier 3
## 3                      1999      Medium               Tier 1
## 4                      1998                           Tier 3
## 5                      1987        High               Tier 3
## 6                      2009      Medium               Tier 3
##         Outlet_Type Item_Outlet_Sales
## 1 Supermarket Type1         3735.1380
## 2 Supermarket Type2          443.4228
## 3 Supermarket Type1         2097.2700
## 4     Grocery Store          732.3800
## 5 Supermarket Type1          994.7052
## 6 Supermarket Type2          556.6088
tail(Bigmart)
##      Item_Identifier Item_Weight Item_Fat_Content Item_Visibility
## 8518           FDF53      20.750              reg        0.083607
## 8519           FDF22       6.865          Low Fat        0.056783
## 8520           FDS36       8.380          Regular        0.046982
## 8521           NCJ29      10.600          Low Fat        0.035186
## 8522           FDN46       7.210          Regular        0.145221
## 8523           DRG01      14.800          Low Fat        0.044878
##               Item_Type Item_MRP Outlet_Identifier
## 8518       Frozen Foods 178.8318            OUT046
## 8519        Snack Foods 214.5218            OUT013
## 8520       Baking Goods 108.1570            OUT045
## 8521 Health and Hygiene  85.1224            OUT035
## 8522        Snack Foods 103.1332            OUT018
## 8523        Soft Drinks  75.4670            OUT046
##      Outlet_Establishment_Year Outlet_Size Outlet_Location_Type
## 8518                      1997       Small               Tier 1
## 8519                      1987        High               Tier 3
## 8520                      2002                           Tier 2
## 8521                      2004       Small               Tier 2
## 8522                      2009      Medium               Tier 3
## 8523                      1997       Small               Tier 1
##            Outlet_Type Item_Outlet_Sales
## 8518 Supermarket Type1          3608.636
## 8519 Supermarket Type1          2778.383
## 8520 Supermarket Type1           549.285
## 8521 Supermarket Type1          1193.114
## 8522 Supermarket Type2          1845.598
## 8523 Supermarket Type1           765.670
head(Bigmart, n=10)
##    Item_Identifier Item_Weight Item_Fat_Content Item_Visibility
## 1            FDA15       9.300          Low Fat        0.016047
## 2            DRC01       5.920          Regular        0.019278
## 3            FDN15      17.500          Low Fat        0.016760
## 4            FDX07      19.200          Regular        0.000000
## 5            NCD19       8.930          Low Fat        0.000000
## 6            FDP36      10.395          Regular        0.000000
## 7            FDO10      13.650          Regular        0.012741
## 8            FDP10          NA          Low Fat        0.127470
## 9            FDH17      16.200          Regular        0.016687
## 10           FDU28      19.200          Regular        0.094450
##                Item_Type Item_MRP Outlet_Identifier
## 1                  Dairy 249.8092            OUT049
## 2            Soft Drinks  48.2692            OUT018
## 3                   Meat 141.6180            OUT049
## 4  Fruits and Vegetables 182.0950            OUT010
## 5              Household  53.8614            OUT013
## 6           Baking Goods  51.4008            OUT018
## 7            Snack Foods  57.6588            OUT013
## 8            Snack Foods 107.7622            OUT027
## 9           Frozen Foods  96.9726            OUT045
## 10          Frozen Foods 187.8214            OUT017
##    Outlet_Establishment_Year Outlet_Size Outlet_Location_Type
## 1                       1999      Medium               Tier 1
## 2                       2009      Medium               Tier 3
## 3                       1999      Medium               Tier 1
## 4                       1998                           Tier 3
## 5                       1987        High               Tier 3
## 6                       2009      Medium               Tier 3
## 7                       1987        High               Tier 3
## 8                       1985      Medium               Tier 3
## 9                       2002                           Tier 2
## 10                      2007                           Tier 2
##          Outlet_Type Item_Outlet_Sales
## 1  Supermarket Type1         3735.1380
## 2  Supermarket Type2          443.4228
## 3  Supermarket Type1         2097.2700
## 4      Grocery Store          732.3800
## 5  Supermarket Type1          994.7052
## 6  Supermarket Type2          556.6088
## 7  Supermarket Type1          343.5528
## 8  Supermarket Type3         4022.7640
## 9  Supermarket Type1         1076.5990
## 10 Supermarket Type1         4710.5350
tail(Bigmart, n=10)
##      Item_Identifier Item_Weight Item_Fat_Content Item_Visibility
## 8514           FDH31      12.000          Regular        0.020407
## 8515           FDA01      15.000          Regular        0.054489
## 8516           FDH24      20.700          Low Fat        0.021518
## 8517           NCJ19      18.600          Low Fat        0.118661
## 8518           FDF53      20.750              reg        0.083607
## 8519           FDF22       6.865          Low Fat        0.056783
## 8520           FDS36       8.380          Regular        0.046982
## 8521           NCJ29      10.600          Low Fat        0.035186
## 8522           FDN46       7.210          Regular        0.145221
## 8523           DRG01      14.800          Low Fat        0.044878
##               Item_Type Item_MRP Outlet_Identifier
## 8514               Meat  99.9042            OUT035
## 8515             Canned  57.5904            OUT045
## 8516       Baking Goods 157.5288            OUT018
## 8517             Others  58.7588            OUT018
## 8518       Frozen Foods 178.8318            OUT046
## 8519        Snack Foods 214.5218            OUT013
## 8520       Baking Goods 108.1570            OUT045
## 8521 Health and Hygiene  85.1224            OUT035
## 8522        Snack Foods 103.1332            OUT018
## 8523        Soft Drinks  75.4670            OUT046
##      Outlet_Establishment_Year Outlet_Size Outlet_Location_Type
## 8514                      2004       Small               Tier 2
## 8515                      2002                           Tier 2
## 8516                      2009      Medium               Tier 3
## 8517                      2009      Medium               Tier 3
## 8518                      1997       Small               Tier 1
## 8519                      1987        High               Tier 3
## 8520                      2002                           Tier 2
## 8521                      2004       Small               Tier 2
## 8522                      2009      Medium               Tier 3
## 8523                      1997       Small               Tier 1
##            Outlet_Type Item_Outlet_Sales
## 8514 Supermarket Type1          595.2252
## 8515 Supermarket Type1          468.7232
## 8516 Supermarket Type2         1571.2880
## 8517 Supermarket Type2          858.8820
## 8518 Supermarket Type1         3608.6360
## 8519 Supermarket Type1         2778.3830
## 8520 Supermarket Type1          549.2850
## 8521 Supermarket Type1         1193.1140
## 8522 Supermarket Type2         1845.5980
## 8523 Supermarket Type1          765.6700
Extracting variables from the file- save as other file
# Remove last 2 variables or recreate the file with 10 variables

Bigmart_10<-Bigmart[,1:10]

# fix(Bigmart_10)

# Create file with only 1 to 100 observation

Bigmart_10<-Bigmart[1:100,]

# fix(Bigmart_10)
combine two data set by column use
bigmart_C<-cbind(Bigmart, Bigmart)

# fix(bigmart_C)

dim(bigmart_C)
## [1] 8523   24
combine two data set by row use
bigmart_r<-rbind(Bigmart, Bigmart)

# fix(bigmart_r)
dim(bigmart_r)
## [1] 17046    12
random sampling- create a file with a random sample of 20 observation
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
bigmart_20<-sample_n(Bigmart, 20)

dim(bigmart_20)
## [1] 20 12
create a random sample with 25% data
bigmart_25_per<-sample_frac(Bigmart, size = 0.25)

dim(bigmart_25_per)
## [1] 2131   12
Explore the scale variables-
summary(Bigmart)
##  Item_Identifier  Item_Weight     Item_Fat_Content Item_Visibility  
##  FDG33  :  10    Min.   : 4.555   LF     : 316     Min.   :0.00000  
##  FDW13  :  10    1st Qu.: 8.774   low fat: 112     1st Qu.:0.02699  
##  DRE49  :   9    Median :12.600   Low Fat:5089     Median :0.05393  
##  DRN47  :   9    Mean   :12.858   reg    : 117     Mean   :0.06613  
##  FDD38  :   9    3rd Qu.:16.850   Regular:2889     3rd Qu.:0.09459  
##  FDF52  :   9    Max.   :21.350                    Max.   :0.32839  
##  (Other):8467    NA's   :1463                                       
##                  Item_Type       Item_MRP      Outlet_Identifier
##  Fruits and Vegetables:1232   Min.   : 31.29   OUT027 : 935     
##  Snack Foods          :1200   1st Qu.: 93.83   OUT013 : 932     
##  Household            : 910   Median :143.01   OUT035 : 930     
##  Frozen Foods         : 856   Mean   :140.99   OUT046 : 930     
##  Dairy                : 682   3rd Qu.:185.64   OUT049 : 930     
##  Canned               : 649   Max.   :266.89   OUT045 : 929     
##  (Other)              :2994                    (Other):2937     
##  Outlet_Establishment_Year Outlet_Size   Outlet_Location_Type
##  Min.   :1985                    :2410   Tier 1:2388         
##  1st Qu.:1987              High  : 932   Tier 2:2785         
##  Median :1999              Medium:2793   Tier 3:3350         
##  Mean   :1998              Small :2388                       
##  3rd Qu.:2004                                                
##  Max.   :2009                                                
##                                                              
##             Outlet_Type   Item_Outlet_Sales 
##  Grocery Store    :1083   Min.   :   33.29  
##  Supermarket Type1:5577   1st Qu.:  834.25  
##  Supermarket Type2: 928   Median : 1794.33  
##  Supermarket Type3: 935   Mean   : 2181.29  
##                           3rd Qu.: 3101.30  
##                           Max.   :13086.96  
## 
summary(Bigmart$Item_Fat_Content)
##      LF low fat Low Fat     reg Regular 
##     316     112    5089     117    2889
summary(Bigmart$Item_Weight)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   4.555   8.774  12.600  12.858  16.850  21.350    1463
#better then summary

library(descr)

descr(Bigmart)
## 
## Item_Identifier
##   FDG33   FDW13   DRE49   DRN47   FDD38   FDF52   FDF56   FDG09   FDO19 
##      10      10       9       9       9       9       9       9       9 
##   FDP25   FDQ40   FDT07   FDU12   FDV38   FDV60   FDW26   FDW49   FDX04 
##       9       9       9       9       9       9       9       9       9 
##   FDX20   FDX31   NCB18   NCF42   NCI54   NCJ30   NCL31   NCQ06   NCY18 
##       9       9       9       9       9       9       9       9       9 
##   DRA59   DRD25   DRF01   DRF03   DRF23   DRF27   DRI03   DRJ24   DRK12 
##       8       8       8       8       8       8       8       8       8 
##   DRK35   DRP35   FDA04   FDA13   FDA15   FDA39   FDA44   FDA50   FDB17 
##       8       8       8       8       8       8       8       8       8 
##   FDC14   FDD05   FDD29   FDE11   FDF04   FDF05   FDF16   FDF22   FDG24 
##       8       8       8       8       8       8       8       8       8 
##   FDG38   FDG57   FDH10   FDH27   FDH28   FDH33   FDI22   FDI41   FDJ44 
##       8       8       8       8       8       8       8       8       8 
##   FDJ55   FDJ58   FDK20   FDK58   FDL10   FDL20   FDL34   FDL58   FDN56 
##       8       8       8       8       8       8       8       8       8 
##   FDO10   FDO32   FDO37   FDO52   FDP11   FDP28   FDQ39   FDR04   FDR23 
##       8       8       8       8       8       8       8       8       8 
##   FDR43   FDR44   FDR46   FDR48   FDR52   FDR59   FDS33   FDS52   FDS55 
##       8       8       8       8       8       8       8       8       8 
##   FDT21   FDT24   FDT32   FDT40   FDT49   FDT55   FDU13   FDU19   FDU23 
##       8       8       8       8       8       8       8       8       8 
## (Other) 
##    7702 
## 
## Item_Weight
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   4.555   8.774  12.600  12.858  16.850  21.350    1463 
## 
## Item_Fat_Content
##      LF low fat Low Fat     reg Regular 
##     316     112    5089     117    2889 
## 
## Item_Visibility
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.02699 0.05393 0.06613 0.09459 0.32839 
## 
## Item_Type
##          Baking Goods                Breads             Breakfast 
##                   648                   251                   110 
##                Canned                 Dairy          Frozen Foods 
##                   649                   682                   856 
## Fruits and Vegetables           Hard Drinks    Health and Hygiene 
##                  1232                   214                   520 
##             Household                  Meat                Others 
##                   910                   425                   169 
##               Seafood           Snack Foods           Soft Drinks 
##                    64                  1200                   445 
##         Starchy Foods 
##                   148 
## 
## Item_MRP
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   31.29   93.83  143.01  140.99  185.64  266.89 
## 
## Outlet_Identifier
## OUT010 OUT013 OUT017 OUT018 OUT019 OUT027 OUT035 OUT045 OUT046 OUT049 
##    555    932    926    928    528    935    930    929    930    930 
## 
## Outlet_Establishment_Year
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1985    1987    1999    1998    2004    2009 
## 
## Outlet_Size
##          High Medium  Small 
##   2410    932   2793   2388 
## 
## Outlet_Location_Type
## Tier 1 Tier 2 Tier 3 
##   2388   2785   3350 
## 
## Outlet_Type
##     Grocery Store Supermarket Type1 Supermarket Type2 Supermarket Type3 
##              1083              5577               928               935 
## 
## Item_Outlet_Sales
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    33.29   834.25  1794.33  2181.29  3101.30 13086.96
library(pastecs)
## Warning: package 'pastecs' was built under R version 3.5.3
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
stat.desc(Bigmart)
##          Item_Identifier  Item_Weight Item_Fat_Content Item_Visibility
## nbr.val               NA 7.060000e+03               NA    8.523000e+03
## nbr.null              NA 0.000000e+00               NA    5.260000e+02
## nbr.na                NA 1.463000e+03               NA    0.000000e+00
## min                   NA 4.555000e+00               NA    0.000000e+00
## max                   NA 2.135000e+01               NA    3.283910e-01
## range                 NA 1.679500e+01               NA    3.283910e-01
## sum                   NA 9.077498e+04               NA    5.636433e+02
## median                NA 1.260000e+01               NA    5.393100e-02
## mean                  NA 1.285765e+01               NA    6.613203e-02
## SE.mean               NA 5.526358e-02               NA    5.589013e-04
## CI.mean               NA 1.083332e-01               NA    1.095582e-03
## var                   NA 2.156169e+01               NA    2.662335e-03
## std.dev               NA 4.643456e+00               NA    5.159782e-02
## coef.var              NA 3.611436e-01               NA    7.802244e-01
##          Item_Type     Item_MRP Outlet_Identifier
## nbr.val         NA 8.523000e+03                NA
## nbr.null        NA 0.000000e+00                NA
## nbr.na          NA 0.000000e+00                NA
## min             NA 3.129000e+01                NA
## max             NA 2.668884e+02                NA
## range           NA 2.355984e+02                NA
## sum             NA 1.201681e+06                NA
## median          NA 1.430128e+02                NA
## mean            NA 1.409928e+02                NA
## SE.mean         NA 6.745559e-01                NA
## CI.mean         NA 1.322293e+00                NA
## var             NA 3.878184e+03                NA
## std.dev         NA 6.227507e+01                NA
## coef.var        NA 4.416897e-01                NA
##          Outlet_Establishment_Year Outlet_Size Outlet_Location_Type
## nbr.val               8.523000e+03          NA                   NA
## nbr.null              0.000000e+00          NA                   NA
## nbr.na                0.000000e+00          NA                   NA
## min                   1.985000e+03          NA                   NA
## max                   2.009000e+03          NA                   NA
## range                 2.400000e+01          NA                   NA
## sum                   1.702752e+07          NA                   NA
## median                1.999000e+03          NA                   NA
## mean                  1.997832e+03          NA                   NA
## SE.mean               9.068189e-02          NA                   NA
## CI.mean               1.777585e-01          NA                   NA
## var                   7.008637e+01          NA                   NA
## std.dev               8.371760e+00          NA                   NA
## coef.var              4.190423e-03          NA                   NA
##          Outlet_Type Item_Outlet_Sales
## nbr.val           NA      8.523000e+03
## nbr.null          NA      0.000000e+00
## nbr.na            NA      0.000000e+00
## min               NA      3.329000e+01
## max               NA      1.308696e+04
## range             NA      1.305367e+04
## sum               NA      1.859113e+07
## median            NA      1.794331e+03
## mean              NA      2.181289e+03
## SE.mean           NA      1.848460e+01
## CI.mean           NA      3.623429e+01
## var               NA      2.912141e+06
## std.dev           NA      1.706500e+03
## coef.var          NA      7.823354e-01
library(psych)

describe(Bigmart)
##                           vars    n    mean      sd  median trimmed
## Item_Identifier*             1 8523  780.71  449.22  784.00  781.25
## Item_Weight                  2 7060   12.86    4.64   12.60   12.80
## Item_Fat_Content*            3 8523    3.60    1.08    3.00    3.61
## Item_Visibility              4 8523    0.07    0.05    0.05    0.06
## Item_Type*                   5 8523    8.23    4.21    7.00    8.27
## Item_MRP                     6 8523  140.99   62.28  143.01  139.70
## Outlet_Identifier*           7 8523    5.72    2.84    6.00    5.73
## Outlet_Establishment_Year    8 8523 1997.83    8.37 1999.00 1998.04
## Outlet_Size*                 9 8523    2.61    1.17    3.00    2.63
## Outlet_Location_Type*       10 8523    2.11    0.81    2.00    2.14
## Outlet_Type*                11 8523    2.20    0.80    2.00    2.13
## Item_Outlet_Sales           12 8523 2181.29 1706.50 1794.33 1971.33
##                               mad     min      max    range  skew kurtosis
## Item_Identifier*           572.28    1.00  1559.00  1558.00 -0.01    -1.20
## Item_Weight                  6.08    4.55    21.35    16.80  0.08    -1.23
## Item_Fat_Content*            0.00    1.00     5.00     4.00  0.06    -0.68
## Item_Visibility              0.05    0.00     0.33     0.33  1.17     1.68
## Item_Type*                   4.45    1.00    16.00    15.00  0.10    -0.97
## Item_MRP                    68.26   31.29   266.89   235.60  0.13    -0.89
## Outlet_Identifier*           4.45    1.00    10.00     9.00 -0.06    -1.26
## Outlet_Establishment_Year    7.41 1985.00  2009.00    24.00 -0.40    -1.21
## Outlet_Size*                 1.48    1.00     4.00     3.00 -0.26    -1.41
## Outlet_Location_Type*        1.48    1.00     3.00     2.00 -0.21    -1.46
## Outlet_Type*                 0.00    1.00     4.00     3.00  0.93     0.62
## Item_Outlet_Sales         1604.06   33.29 13086.96 13053.67  1.18     1.61
##                              se
## Item_Identifier*           4.87
## Item_Weight                0.06
## Item_Fat_Content*          0.01
## Item_Visibility            0.00
## Item_Type*                 0.05
## Item_MRP                   0.67
## Outlet_Identifier*         0.03
## Outlet_Establishment_Year  0.09
## Outlet_Size*               0.01
## Outlet_Location_Type*      0.01
## Outlet_Type*               0.01
## Item_Outlet_Sales         18.48
describe(Bigmart$Item_Weight)
##    vars    n  mean   sd median trimmed  mad  min   max range skew kurtosis
## X1    1 7060 12.86 4.64   12.6    12.8 6.08 4.55 21.35  16.8 0.08    -1.23
##      se
## X1 0.06

library(skimr)
skim(bigmart1)

library(DataExplorer)

create_report(bigmart1)


Note:- Few codes are not run intentionally 
example 
# Bigmart
 # Bigmart[,] 
# Bigmart[2,] 
and so on

No comments:

Post a Comment