library(dplyr)
# import the file
mbaper<-read.csv("C:/Users/Administrator.vaio1/Desktop/MBAdata.csv")
#Equivalent of str in traditional approach. Gives the structure of data
str(mbaper)
fix(mbaper)
glimpse(mbaper)
# adding or removing variables from the file
mbaper_age<-select(mbaper, Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-select(mbaper, -Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-select(mbaper, Age_in_years_completed:Mothers_qualification)
fix(mbaper_age)
#-------------------------------------------------------#
#To filter data based on some conditions we could use the filter function=filter(dataset, variable==value)
mbaper_age<-filter(mbaper, Percentage_in_10_Class==75)
fix(mbaper_age)
mbaper_age<-filter(mbaper, Percentage_in_10_Class<75)
fix(mbaper_age)
mbaper_age<-filter(mbaper, Percentage_in_10_Class>75)
fix(mbaper_age)
#-------------------------------------------------------#
# specific category from a categorical variable
mbaper_zone<-filter(mbaper, STATE=="North East Zone")
fix(mbaper_zone)
# more than one category
# , for and
mbaper_zone<-filter(mbaper, STATE=="North East Zone",STATE=="Central Zone")
fix(mbaper_zone)
# | for or
mbaper_zone<-filter(mbaper, STATE=="North East Zone" | STATE=="Central Zone")
fix(mbaper_zone)
# | for or### exact word has to be used
mbaper_zone<-filter(mbaper, STATE=="North East Zone" | Previous_Degree=="Commerce")
fix(mbaper_zone)
mbaper_zone<-filter(mbaper, STATE=="North East Zone" , Previous_Degree=="Commerce")
fix(mbaper_zone)
#-------------------------------------#
#Select columns and then subset data based on a condition, combination of rows and variables
mbaper_age<-select(mbaper, Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-filter(select(mbaper, Age_in_years_completed),Age_in_years_completed==25)
fix(mbaper_age)
# --------------------------------------------------# pipe function
1:8 %>% sum
1:8 %>% sum %>% sqrt
1:8 %>% sum %>% sqrt%>% sum*10
#---------------------------------#
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
filter(Age_in_years_completed==22)
fix(mbaper_age)
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
arrange(Age_in_years_completed)
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
arrange(-Age_in_years_completed)
# import the file
mbaper<-read.csv("C:/Users/Administrator.vaio1/Desktop/MBAdata.csv")
#Equivalent of str in traditional approach. Gives the structure of data
str(mbaper)
fix(mbaper)
glimpse(mbaper)
# adding or removing variables from the file
mbaper_age<-select(mbaper, Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-select(mbaper, -Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-select(mbaper, Age_in_years_completed:Mothers_qualification)
fix(mbaper_age)
#-------------------------------------------------------#
#To filter data based on some conditions we could use the filter function=filter(dataset, variable==value)
mbaper_age<-filter(mbaper, Percentage_in_10_Class==75)
fix(mbaper_age)
mbaper_age<-filter(mbaper, Percentage_in_10_Class<75)
fix(mbaper_age)
mbaper_age<-filter(mbaper, Percentage_in_10_Class>75)
fix(mbaper_age)
#-------------------------------------------------------#
# specific category from a categorical variable
mbaper_zone<-filter(mbaper, STATE=="North East Zone")
fix(mbaper_zone)
# more than one category
# , for and
mbaper_zone<-filter(mbaper, STATE=="North East Zone",STATE=="Central Zone")
fix(mbaper_zone)
# | for or
mbaper_zone<-filter(mbaper, STATE=="North East Zone" | STATE=="Central Zone")
fix(mbaper_zone)
# | for or### exact word has to be used
mbaper_zone<-filter(mbaper, STATE=="North East Zone" | Previous_Degree=="Commerce")
fix(mbaper_zone)
mbaper_zone<-filter(mbaper, STATE=="North East Zone" , Previous_Degree=="Commerce")
fix(mbaper_zone)
#-------------------------------------#
#Select columns and then subset data based on a condition, combination of rows and variables
mbaper_age<-select(mbaper, Age_in_years_completed)
fix(mbaper_age)
mbaper_age<-filter(select(mbaper, Age_in_years_completed),Age_in_years_completed==25)
fix(mbaper_age)
# --------------------------------------------------# pipe function
1:8 %>% sum
1:8 %>% sum %>% sqrt
1:8 %>% sum %>% sqrt%>% sum*10
#---------------------------------#
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
filter(Age_in_years_completed==22)
fix(mbaper_age)
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
arrange(Age_in_years_completed)
mbaper_age<-select(mbaper, Age_in_years_completed) %>%
arrange(-Age_in_years_completed)
No comments:
Post a Comment