discriminant analysis for two group
rm(list=ls())
#Discriminat analysis
#import data set
da1<-read.csv("C:/Users/Administrator.vaio1/Desktop/discriminant two group hair.csv")
fix(da1)
library(MASS)
library(psych)
library(Hmisc)
library(stats)
library(HSAUR)
library(dawai)
#library(rattle)
library(car)
library(MVN)
library(perturb)
library(biotools)
library(FactoMineR)
library(DiscriMiner)
#create a subset of the data for simplicity say x2 and x6, x7,x8,x9,x10
dasub1<-da1[,c(3,7:19)]
fix(dasub1)
#Henze-Zirkler's MVN test
rm(list=ls())
#Discriminat analysis
#import data set
da1<-read.csv("C:/Users/Administrator.vaio1/Desktop/discriminant two group hair.csv")
fix(da1)
library(MASS)
library(psych)
library(Hmisc)
library(stats)
library(HSAUR)
library(dawai)
#library(rattle)
library(car)
library(MVN)
library(perturb)
library(biotools)
library(FactoMineR)
library(DiscriMiner)
#create a subset of the data for simplicity say x2 and x6, x7,x8,x9,x10
dasub1<-da1[,c(3,7:19)]
fix(dasub1)
#Henze-Zirkler's MVN test
library(MVN)
multinormality<-mvn(dasub1, subset = "x4", mvnTest = "hz")
# mvnTest "mardia" for Mardia’s test,
# "hz" for HenzeZirkler’s test,
# "royston" for Royston’s test,
# "dh" for Doornik-Hansen’s test
# and energy for E-statistic
multinormality$multivariateNormality
# outliers can also be identified
multinormality<-mvn(dasub1, subset = "x4", mvnTest = "hz", showOutliers = TRUE)
multinormality$multivariateOutliers
#multicollinearity
#Homogeneity of variance-covariance matrix using Anderson's test, Box's M test
#boxplot
boxplot(dasub1$x6~dasub1$x2)
#box M test
library(biotools)
# box m (IV, D-group)
boxM(dasub1[,-1],dasub1$x2)
# wilks lambda
library(rrcov)
Wilks.test(dasub1[,-1],dasub1$x2)
or
Wilks.test(dasub1[,-1], dasub1$x4)
Wilks.test(x4~., data = dasub1)
# eign value and cannonical correlation
library(candisc)
reg3<-lm(as.matrix(dasub1[,-1])~dasub1$x4)
regcanno<-candisc(reg3)
regcanno
library(MASS)
da11<-lda(x2~x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x18, data= da1, na.action = "na.omit", cv=TRUE)
summary(da11)
da11$prior
da11$counts
da11$means
da11$scaling # canonical discriminat function
da11$svd
#linear discriminat analysis (classification function)
library(DiscriMiner)
dasub1$x2<-factor(dasub1$x2)
da12<-linDA(dasub1[,-1],dasub1$x2)
da12
summary(da12)
da12$functions # fisher classification function
da12$confusion
da12$scores
da12$classification
da12$error_rate
discPower(dasub1[,-1],dasub1$x2) # # discriminating power, wilks lambda
No comments:
Post a Comment